Action Recognition and Prediction for Driver Assistance Systems Using Dynamic Belief Networks
نویسندگان
چکیده
The design of advanced driver assistance systems always aims at enabling the driver to master today’s traffic in a more safe and comfortable way. In order to judge the risks in a situation and initiate precautionary actions, future systems have to possess the capability to predict the behavior of surrounding traffic participants. This paper outlines an approach to predictive situation analysis for driver assistance systems and discusses one key issue in more detail namely the predictive action recognition. In this context, a situation representation formalism will be introduced that exploits time as a compact physical measure. Furthermore, it will be shown how probabilistic networks can be used for reasoning about driver (action) intentions and how such networks can help to cope with uncertainty resulting from inaccuracy in models and sensor data. First results are shown in simulation for highway overtake scenarios. In the situations presented the prediction for an upcoming lane change can be made by the assessment of the time gaps to the nearest neighbors of that specific vehicle.
منابع مشابه
Detection and Recognition of Multi-language Traffic Sign Context by Intelligent Driver Assistance Systems
Design of a new intelligent driver assistance system based on traffic sign detection with Persian context is concerned in this paper. The primary aim of this system is to increase the precision of drivers in choosing their path with regard to traffic signs. To achieve this goal, a new framework that implements fuzzy logic was used to detect traffic signs in videos captured along a highway f...
متن کاملDesign an Intelligent Driver Assistance System Based On Traffic Sign Detection with Persian Context
In recent years due to improvements of technology within automobile industry, design process of advanced driver assistance systems for collision avoidance and traffic management has been investigated in both academics and industrial levels. Detection of traffic signs is an effective method to reach the mentioned aims. In this paper a new intelligent driver assistance system based on traffic...
متن کاملPrediction Error Evaluation of Various Stereo Matching Algorithms on Long Stereo Sequences
Prediction errors are commonly used when analyzing the performance of a multi-camera stereo system using at least three cameras. This paper discusses this methodology for performance evaluation on long stereo sequences (in the context of vision-based driver assistance systems). Three cameras are calibrated in an ego-vehicle, and prediction error analysis is performed on recorded stereo sequence...
متن کاملO11: Safety Potential of Advanced Driver Assistance Systems
Advanced driver assistance systems (ADAS) have the potential to accomplish a major contribution to road safety. This is valid for minor crashes to very severe accidents with personal injuries. The Allianz Centre for Technology attends the development of new driver assistance systems by carrying out accident analysis and estimating the efficiency of new ADAS. In this context new ADAS from differ...
متن کاملAlert correlation and prediction using data mining and HMM
Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002